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X?l 

h = + g (xc), g(x) = \ \ \ K (t, E) (ta - 1) dtd@q 

-10 -1 

Using the expression obtained for h and the isoperimetric condition, we find that 

h = [ig(Z)d.]-’ M 2.269 
0 

Figure 2 shows the optimal thickness distribution (because of symmetry,only the region 

z > 0 is shown). 
We shall now show that when D is linearly dependent on h (a + oo) , the necessary 

condition of optimality also becomes sufficient. In fact, let h* and U* be solutions 

satisfying the condition of optimality, h be an arbitrary thickness distribution and U 

be the corresponding deflection function. Then 

We shall show that Ah > 0. To do this, we take into account the condition of optimal- 

ity (3.3), the isoperimetric condition (3.1) and the properties of the functions h*, U* 

and h, U, to arrive at the following estimates: 

*A = 11 e*, u*) 11 (h, U) > ZIP*, u*j _ I1 (h. u*j = 
z-2 (u*) -Tpj-’ I1 (u*) zz (II*) 
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A system of equations of the Reissner plate bending theory is formulated in terms 
of stress functions. An estimate of the elastic energy is deduced from the varia- 
tional principle for the stress functions. By using this estimate it is proved that 
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the solution of the system of Reissner equations tends to the solution of the Kirch- 
hoff equation in terms of the energy norm as the plate thickness diminishes. 

1, Kfrchhoff and Ref8aner model,. In a Cartesian coordinate system za 
(the Greek superscripts take on the values 1, 2), let us consider a linearly elastic aniso- 

tropic plate of constant thickness h, whose middle plane occupies a bounded simply- 

connected domain Q with the smooth boundary I7 in the x” plane. The state of stress 
of the plate under bending is described by the tensor of the bending moments rrzafl and 

the vector of the transverse forces 9”. In the Reissner model qa and ml0 are determined 
from the solution of the following variational problem: find the minimum of the func- 

tional 

among all the functions rnafi and 4” satisfying the constraints 
mc$,a _ qa = 0, qa,& = 0, rn@ = rn@ (1.2) 

maPvp = Ma (s), qav, = Q (s) on r (1.3) 

Here the comma in the subscripts denotes differentiation with respect to xa, vu is the 

vector of the external unit normal to the contour r, s is the arclength along I’, the 
external forces are considered applied only to the contour I’ and reduce to the bending 
moment Ma (s) and the transverse force Q (s), the elastic energy density is a quadratic 

form in map and pa of the form 

ZQD = A=@~~rn~~rn~s + h’B”%,qp (1.4) 

The elastic compliance tensors A @ys and Ba@ are considered independent of the 

parameter It (the factor hS3 which is not essential later is omitted). The tensor AaPys 

has the symmetry of the elastic models tensor. 

Reissner obtained the variational problem (1.1) - (1.4) from the Castigliano variation- 
al principle on the basis of hypotheses relative to the stress tensor components [l]. Ap 

propriate hypotheses relative to the displacement vector components and a derivation 

of the Reissner equations from the Lagrange variational principle are presented in [a]. 
The variational problem in displacements is dual [3] to the variational problem (l.l)- 
(1.4). The asymptotic accuracy of the Reissner model has been proved in [4]. 

In the Kirchhoff model map and qa are determined from the problem of seeking the 

minimum of the functional 
EK = 5 OK (map) dxldxa (1.5) 

fi 

among all functions m@ and qa which satisfy Eqs.(l. 2) in the domain 52 and the fol- 
lowing conditions on r 

m+vavp = M (4, qava + -& m@zavp = N (s) (1.6) 

Here 20 is a vector tangent to I’ (the direction of traversal for which the domain Q 
remains on the left is taken as positive), (&= @ (maa, Cl), and the Kirchhoff forces 
M and iv are related to Ma and Q by the formulas 

M = M%, N=Q+-&M% 

The quantity MOT= is later considered a continuously differentiable function on r. 
Notes. 1”. At first glance the variational formulations presented above seem to 
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be astonishing since the natural space in which the minima of E and EK should be 
sought is L2, while the differential relations (1.2) and constraints on the set of measure 
zero (1.3) and (1.6) are imposed on the required functions. However, the constraints 
(1.2), (1.3) which are meaningful only for differentiable continuous functions admit of 

an extension to L2 if they are written in the form [3] 

1 [mas’!(=, a) + 4” (% = + +=)I c5Ab.9 = j (Ma*= + Qu) ds (1.7) 
n 

Here the parentheses in the subscripts denote the symmetrization operation, $= and 11 

are arbitrary functions from Hz1 ($2). (It is taken into account in (1.7) that the func- 

tional E is independent of the antisymmetric part of the bending moments tensor, hence, 
the last relationship in (1.2) can be discarded by substituting the tensor mr=s)) instead 
of mas on the first equation in (1.2). 

The constraints (1.2), (1.6) are extended to L, as follows (U is any function from 

Hs2 @)): - m=su,=,&+&$ = 
s 

--M&Nu) ds (1.8) 
n S( 

Here a/& = v=a/ax=. Let us note that the relationship (1.8) follows formally from 

(1.7), if we set $= = - U,= in (1.7) and the integral over I’ is converted by using the 

identities M” = v” (Mb& + z= (MDT& (1.9) 

s 
M=u,=ds = 

SC 
M .f$ - u-& M=%= ds 

r 1 

2’. The functions M” and Q given on I? in the Reissner model should satisfy the 
conditions 

c 
Qds = 0, s (M” - z=Q) ds = 0 (1.10) 

I: r 

These conditions are obtained from (1.7) if we set 

$= = 0, U = COIlSt; $a = CoL = ConSt 7 u = - c,P 

The quantities M and N in the Kirchhoff model should satisfy the contraints 

@ja=O, .l(v=M-z=N)ds=O (1.11) 
r r 

The equalities (1.11) follow from (1.8) for u = const and u = c=x=. The equiva- 

lence of the constraints (1.10) and (1.11) is easily proved by using the identities (1.9). 

2. Strer, function8 (*I. General solution of the equilibrium 

equations. Any solution of the equilibrium equations (1.2) can be represented lo- 
cally as 

maa = esYxrY + e@x, q= = e=sx,p, x = ‘l2x> (2.Q 

where ks are the Levi-Clvita symbols (ell = e22 = 0, e12 = - e21 = 1) and X” 
are certain functions. 

Actually, the general solution of the second equation of (1.2) locally has the form 

Q” = e”sx.p (2.2) 

;5] Assertions 1’ and 6’ are particular cases of the corresponding Reissner results forshells 
. 
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where X is an arbitrary function. Rewriting the first equation in (1.2) as 

(Ws - e@X),a = 0 

we obtain analogously to (2.2) 
m=P - e=PX = ePYx”y (2.3) 

where X” are arbitrary functions. There remains to satisfy the symmetry condition for 
the bending moments tensor. Displacing (2.3) with e=p we arrive at the third equation 

in (2.1). 
It is easy to see that x” are components of a pseudovector. Henceforth, we shall call 

X” the stress functions. 

2”. Arbitrariness in the selection of the stress functions. Inor- 
der for the functions xa and X’= to correspond to the same state of stress, it is necessary 

and sufficient that (c, ca are arbitrary constants) 

x’” = x” + cxa + c= 

Henceforth, we shall eliminate arbitrariness in the selection of the functions X= by im- 

posing the condition 

s x=ds = 0, s XdS = 0 (2.4) 
r r 

3”. Boundary conditions. Equations (1.2) are common to the Kirchhoff and 

Reissner models, hence, admissible states of stress can be represented in terms of stress 

functions in both the Kirchhoff and Reissner models. The difference will be in the boun- 

dary conditions for the stress functions. 
According to (1.3) and (2. l), the stress functions in the Reissner model should satisfy 

the following relationships on r 

dXalds - T=Qx = M” (s), dxlds = Q (s) (2.5) 

The relationships (2.5) represent a system of three ordinary differential equations in the 
functions Xa and X and are integrated explicitly ; however, it will be more convenient 

later to deal with the differential form of writing (2.5). Because of (1. lo), the Xa and 

X determined from (2.5) are univalent functions on r. 

The boundary conditions written in terns of the stress functions in the Kirchhoff mo- 

del acquire the simple form 

W v, -& = M(s), $3g = Iv(S) (2.6) 

The relationships (2.6) represent a system of equations in Xa and exactly as (2.5), are 

integrated explicitly. By using (1.11) it is easy to see that the corresponding solutions 
are univalent functions on the contour 1’. 

The quantities JP and Q are related to M, N and Q by one-to-one relationships, 
hence the Kirchhoff forces M and N as well as the transverse force Q can be con- 
sidered given in the Reissner model. The Kirchhoff and Reissner boundary conditions in 
terms of the stress functions hence acquire a simple content: the Kirchhoff boundary con- 
ditions reduce to prescribing two functions xa on I’ and the Reissner boundary conditions 
reduce to prescribing the function x E ‘/sx,E in addition to x= . 

4’. Conditions on the discontinuity. It is sometimes convenient to use 

piecewise-smooth functions to construct the admissible fields m@ and ‘I= . The discon- 
tinuities in m@, Qa, X= and x cannot be arbitrary. Appropriate conditions on the 
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d&continuities are derived from (1. ‘7) and (1.8) and have identical form for the Kirch- 
hoff and Reissner models [ x=l = 

cx” + c=, [xl = c 

Here [A] is the difference in the values of the quantity A on two sides of the line of 

discontinuity, and c, ca are some constants. 

5”. Variational principle for the Reissner model. The variational 
problem (1.1) - (1.4) is formulated as follows in terms of the stress functions: find the 
minimum of the functional 

among all the functions x” satisfying the conditions (2.5) on the contour r . 

6”. Compatibility equations for the Reissner model. The Euler 
equations of the variational problem in the preceding item are 

aa 
- ePY - ( ) + 

* a a@ eYP -- - 

am=p ,y ( > 2 axa aqy ,p = 
0 (2.8) 

After having substituted the expression (1.4) for @ into (2.8), then (2.8) is converted 

into an equation in ma@ and qa which closes the system of equilibrium equations (1.2) 

and (1.3). 
In particular, in the isotropic case 

Hence, (2.8) becomes 
h 

- rnz yeay - 
3h+2p ’ (2.9) 

It can be verified that substituting the equation of state 

into (2.9) converts it into an identity. 

8, One eatimrtr of the elrrtic energy. In the neighborhood Q’ of the 
contour r let it be possible to introduce a curvilinear p, s, coordinate system related 

to 2” by the formulas 5” = zaa (s) - pv= (s). Here zaco” (s) are functions giving the 

contour I? parametrically, O<s<L, O<p<l, L iseelengthof I? and 
1 is a sufficiently small fixed number. The p, s coordinate system is orthogonal, and 
the covariant components of the metric tensor are given by the formulas 

&P = 1, g,, = (1 + kp)2, g,, = 0, k = v=dT= / da 

Let us assume that the functions x0’= (s) are triply differentiable, and the curvature 
k (s) of the contour I? and its first derivative are bounded 1 k (s) 1 < k,, 1 dklds 1 < 
k,. Let k,L < 1 also, and let the parameter h be so small that h < 2, hlk, Q 1. 

Theorem. The inequality 
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Eo < A \ (M2 + L2N2 + hLQ2) ds 
r 

(3.1) 

where the constant A depends only on k,, k,, 1 and the elastic moduli holds for the 
elastic energy E, found by the Reissner model (*) . 

Lemma. We consider the problem of the minimum of the functional 

among the functions Xa satisfying the following conditions on I’ : 

x= Ir = xoa, x Ir = x0 
Then the estimate 

I,,‘A_#z ~)‘+Iz~($$$)“+ (rz~)‘]ds (3.3) 

is valid for the minimal vilue 1, of the functional I . 
Proof. Let us rewrite the integrand in (3.2) in the neighborhood P’ of the contour 

P in the curvilinear P, s coordinate system by replacing the partial derivatives with 

respect to za by partial derivatives with respect to p, s by the rules for differentiating 

$ complex function, and by introducing the variables X+ and XV in place of Xa by the 

relationships X0 = X,va + Xrr”. The formulas 

P,@ = -. v, (4, S,b = (1 4 Q)-lT,. 

dZ”&U g= 
ds ’ ds 

- kza, dx’dxa = Iif kp 1 dpds 

are required here. 

After simple estimates, we obtain (the comma in the subscripts denotes partial deriva- 

tives) 
II+kpIx,,pX”‘PdA[X~,~+X~,,+X~,s+X,2,p+ (3.4) 

kr2 (x7’ + x,91 

I 1 + kp I x,,x’” <A ix:, 8s + X3, Ps + X”,, ps + x”,, pp + 

(k? + Lakz2) x:, 8 + k9 (x:, s + x:,,, + (k14 + ks4) X,al 

We specify the functions X, and Xr in 62’ by the formulas 

Xr = Xo?J (PI* X” = xoavar f (PI + x0&! (PI (3.5) 
f (P) = (1 - P2/12)2, g (P) = P (1 - P2/h2)2 

Outside of 62’ we set Xa = 0. The functions constructed are admissible, hence their 

substitution into (3.2) yields the upper bound for 1” . Because of this substitution, by 
using the inequalities 

(3,6) 

*) The letter A will later denote constants independent of k 
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as well as the inequalities (3.4). we obtain (3.3). The inequalities (3.6) are derived by 
using the Wirtinger inequalities [S]. 

Proof of the theorem. We can write for the elastic energy density 

2cD < A (mapmap + haq=qa) = A (xa, 5x=* P - ‘/z (x:? + 

h2x,=x*=) < A (x=Jx=*~ + h2x,=x*=) 

Hence, the minimum (2.7) of the functional E among the functions satisfying the boun- 

dary conditions (2.5) will not exceed the minimum in the same set of functions of the 

functional A. I. Hence,(3.1) results from the use of (2.6), (3.3) and the Wirtinger in- 
equalities. 

Note. It hes not been used above that the tensor of the elastic compliances is in- 
dependent of z=. Hence, the ‘ssertion proved is valid even for variable-thickness inho- 

mogeneous plates. 

4. Asymptotic behavior of $olutlon$ of the Ref~net equrtlon8. 
Let us henceforth consider the external loads M” and Q independent of the parameter 

h, and bf2 + Na + 0. Then E, evidently is on the order of ho = 1. 
Theorem. The solution of the system of Reissner equations converges, as h -+ 0 , 

to the solution of the Kirchhoff equations in energy form. 

Proof. Let rn@, qKa and rrz#a, qRa be the solutions of the Kirchhoff and Reiss- 

ner equations. Am”a, Aqa their difference, E (Am@, Aq”) the elastic energy of the 

field AmuD, Aq". We show that 

E (AmaP, Ap) = 0 (h) (4.1) 

The assertion of the theorem evidently follows from (4.1). 

Let us consider the solution m K=B and qK3 of the Kirchhoff equations known and let 

us replace the required functions in the variational problem (1.1) - (1.4) by m’@ = 

map - mK=P, q Ia = qa - qKa. After discarding terms dependent only on rn;P and 

qk the energy functional becomes 

J=J(aV m’=a, q’“) + h’g=,q’=q# + Aapyhm’afim$ ds’ dXa (4.2) 
n 

The quantities m’=O and q’” are determined from the problem of the minimum of the 

functional I for all functions m’=fl and q’” satisfying (1.2) and the boundary conditions 

m’%s = Za (Maza - mptpvY) (4.3) 

‘a 
q v,=-_%(M” tp - mgrBvy) 3 Q’ 

We note that the Kirchhoff boundary forces M and N are equal zero for the boun- 
dary conditions (4.3). The minimizing element of the function J is Am@, Ap. 
Let us show that the last term in (4.2) vanishes. In fact, a function u exists for the 

solution of the Kirchhoff equations such that A=pra mIiy8 = z.~,~p, hence,the last term 
in (4.3) can be rewritten as 

(4.4) 
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On the other hand, by 
tion u 

virtue of (1.2) and (4.3), the integral (4.4) vanishes for any func- 

Let us estimate the second term in (4.2) by using the Cauchy-Buniakowski inequalities 

ha 
s 

B,pq’aqKP dxl dxa < $1 ( + B,pq’aq’P + 2BapqK”qKP) ~3x1 dx2 < (4.5) 
6-l n 

f \ CD (m’@, q’a) dxl dx2 + h2 \ BapqKaqKP dx’ dx2 
n 11 

On the basis of (4.5). the upper and lower bounds of the functional J are 

$ \ CD (rn’@, q’a) dx’ dx2 - ha 1 BcrPqK”qKP dxl dxa < J < (4.6) 
n n 

+ \ @ (rr~‘~b, q’a) dxl dza + h2 \ B,,qKaqKP dx’ dx2 
11 n 

Setting m’@ = AmaP, q’a = Aqa, we have from the first inequality in (4.6) 

+ E (Am@, Aqa) - h2 \ BlzpqKaqgP dxl dx2 < inf ,I (4.7) 
n 

Minimizing both sides of the second inequality (4.6) in m’@ and q’” 

inf I < + inf 
5 

0 (m’@, q’a) dXi dx2 + h2 \ B,pqpq# dXi ax2 (4.8) 
61 CA 

We estimate the right side in (4.8) by using the inequality (3.1). Since M = N = 0 

for the boundary conditions (4.3), we obtain 

inf 
d 

0 (m’+, q’a) dxl dxca 6 Ah i Q’” ds (4.9) 
r 

The assertion of the theorem and (4.1) follow from (4.7) and (4. 9). 
The question of convergence of the solutions of the Reissner equations to the solutions 

of the Kirchhoff equations was examined in [7] by another method. 
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