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Using the expression obtained for 4 and the isoperimetric condition, we find that

b= [S g (2) dx]_l ~ 2.269

Figure 2 shows the optimal thickness distribution (because of symmetry,only the region
z > 0 is shown),

We shall now show that when D is linearly dependent on h (o — 00) , the necessary
condition of optimality also becomes sufficient. In fact,let ~2* and U* be solutions
satisfying the condition of optimality, % be an arbitrary thickness distribution and U
be the corresponding deflection function. Then

In(h*, U*y  I1(h, U)
Al = *) — = —
We shall show that AX > 0. To do this, we take into account the condition of optimal-
ity (8. 3), the isoperimetric condition (3. 1) and the properties of the functions h*, U*
and %k, U, to arrive at the following estimates:
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A system of equations of the Reissner plate bending theory is formulated in terms
of stress functions. An estimate of the elastic energy is deduced from the varia-
tional principle for the stress functions, By using this estimate it is proved that
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the solution of the system of Reissner equations tends to the solution of the Kirch-
hoff equation in terms of the energy norm as the plate thickness diminishes.

1, Kirchhoff and Reissner models, In a Cartesian coordinate system z%
(the Greek superscripts take on the values 1, 2), let us consider a linearly elastic aniso-
tropic plate of constant thickness %, whose middle plane occupies a bounded simply-
connected domain Q with the smooth boundary T in the x= plane. The state of stress
of the plate under bending is described by the tensor of the bending moments m*# and
the vector of the transverse forces g*. In the Reissner model g* and m?*P are determined
from the solution of the following variational problem: find the minimum of the func-

tional E = S @ (me8, ¢8) da'da? (L. 1)
Q
among all the functions m*# and ¢* satisfying the constraints (1.2)
m“ﬁsp —q* =0, %0 = 0, med = mp* ’
mebyy = M*(s), ¢va=Q(s) on T (1.3)

Here the comma in the subscripts denotes differentiation with respect to x*, v* is the
vector of the external unit normal to the contour I', s is the arclength along I', the
external forces are considered applied only to the contour I' and reduce to the bending
moment M% (s) and the transverse force Q (s), the elastic energy density is a quadratic
form in m®® and g* of the form

2D = Abrd MaMys + thanaqs (1.4)

The elastic compliance tensors A*P"® and B8 are considered independent of the
parameter /. (the factor k=3 which is not essential later is omitted), The tensor A*#Y®
has the symmetry of the elastic models tensor.

Reissner obtained the variational problem (1, 1) — (1. 4) from the Castigliano variation-
al principle on the basis of hypotheses relative to the stress tensor components [1]. Ap~
propriate hypotheses relative to the displacement vector components and a derivation
of the Reissner equations from the Lagrange variational principle are presented in [2].
The variational problem in displacements is dual [3] to the variational problem (1. 1)—
(1.4). The asymptotic accuracy of the Reissner model has been proved in [4].

In the Kirchhoff model m*® and g2 are determined from the problem of seeking the

ini f th tional
minimum of the functiona By — S(DK (m=8) da?da? (L.5)
Q

among all functions m®# and ¢* which satisfy Eqs, (1. 2) in the domain Q and the fol~
lowing conditions on T’

m“ﬂvan =M (S), Q“Va _‘__ “%maBraVB = N(S) (1' 6)

Here 7% is a vector tangent to I' (the direction of traversal for which the domain
remains on the left is taken as positive), QPg= @ (m=f, 0), and the Kirchhoff forces
M and N are related to M* and Q by the formulas
d
MZMaVa, N:Q—*-EMLIT'“

The quantity M1, is later considered a continuously differentiable function on I'.
Notes. 1°. At first glance the variational formulations presented above seem to
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be astonishing since the natural space in which the minima of E and Ejy should be
sought is L,, while the differential relations (1, 2) and constraints on the set of measure
zero (1.3) and (1, 6) are imposed on the required functions, However, the constraints
(1. 2), (1. 3) which are meaningful only for differentiable continuous functions admit of
an extension to L, if they are written in the form [3]
S (M, gy + ¢* (U, « + Yo)] d2ztda? = S(M e + Qu)ds (L7
g r
Here the parentheses in the subscripts denote the symmetrization operation, P, and u
are arbitrary functions from H,! (Q). (It is taken into account in (1.7) that the func-
tional E is independent of the antisymmetric part of the bending moments tensor, hence,
the last relationship in (1.2) can be discarded by substituting the tensor m(*) instead
of m*P on the first equation in (1, 2),
The constraints (1. 2), (1. 6) are extended to L, as follows (u is any function from

H.2(Q)): 3
2* () — Smuﬂu,agdxldxz = B (— MTI:- 4 Nu) ds (1.8)
d
Here 8/dv = v,0/0x®. Let us note that the relationship (1. 8) follows formally from
(1.7),if we set Yo = — U,q in (1.7) and the integral over I" is converted by using the
identities M2 = v (MByg) - 12 ( Mbyy) (1.9
o . ou d
ISM Uiads = IS (M55 — ugy Move) ds
2°. The functions M* and Q givenon I' in the Reissner model should satisfy the
conditions
Sst =0, S(M“—x“Q)dS= 0 (1. 10)
r r
These conditions are obtained from (1. 7) if we set
Yo =0, u = const; ¥, = ¢, = const, u = — Ca2°
The quantities M and N in the Kirchhoff model should satisfy the contraints
(wvas =0, So=M —2oN)ds =0 (1.11)
r T

The equalities (1. 11) follow from (1. 8) for © = const and u = ¢,z*. The equiva~
lence of the constraints (1, 10) and (1. 11) is easily proved by using the identities (1, 9).

2, Stress functions (*). General solution of the equilibrium
equations, Any solution of the equilibrium equations (1. 2) can be represented lo-
cally as
! meb = eBryl 4By,  ¢* = e®Pyg X ="/sla C
where e*8 are the Levi-Clvita symbols (e!! = ¢? = 0, e'® = — ¢ = 1) and *
are certain functions,

Actually, the general solution of the second equation of (1. 2) locally has the form

q* =efyg (2.2

*) Assertions 1° and 6° are particular cases of the corresponding Reissner results forshells
[5].
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where ) is an arbitrary function, Rewriting the first equation in (1.2) as
(m? — exby) s = 0
we obtain analogously to (2. 2)
s — esBy — oy, (2.9

where X* are arbitrary functions. There remains to satisfy the symmetry condition for
the bending moments tensor. Displacing (2.3) with e, we arrive at the third equation
in (2. 1).

It is easy to see that ¥* are components of a pseudovector, Henceforth, we shall call
X* the stress functions,

2°, Arbitrariness in the selection of the stress functions. Inor-
der for the functions ¢* and x'“ to correspond to the same state of stress, it is necessary
and sufficient that (c, c* are arbitrary constants)

X’a — Xa + cxa + cl
Henceforth, we shall eliminate arbitrariness in the selection of the functions X* by im-

ing the conditi

posing the condition Sx“ds =0, Sxds =0 (2.4)
r r

3°, Boundary conditions, Equations(1.2) are common to the Kirchhoff and
Reissner models, hence, admissible states of stress can be represented in terms of stress
functions in both the Kirchhoff and Reissner models. The difference will be in the boun-
dary conditions for the stress functions.

According to (1,3) and (2. 1), the stress functions in the Reissner model should satisfy
the following relationships on I’

dye/ds — 1y = M= (s), dx/ds = Q (s) (2.5)

The relationships (2. 5) represent a system of three ordinary differential equations in the
functions ¥* and % and are integrated explicitly ; however, it will be more convenient
later to deal with the differential form of writing (2. 5). Because of (1. 10), the X* and
X determined from (2. 5) are univalent functions on I'.

The boundary conditions written in terins of the stress functions in the Kirchhoff mo-

del acquire the simple form
dy® a
va-de=M(s), %T«%—=N(3) (2.6)
The relationships (2, 6) represent a system of equations in X* and exactly as (2. 5), are
integrated explicitly, By using (1. 11)it is easy to see that the corresponding solutions
are univalent functions on the contour 1'.

The quantities M and Q are related to M, N and Q by one-to-one relationships,
hence the Kirchhoff forces M and N as well as the transverse force () can be con-
sidered given in the Reissner model, The Kirchhoff and Reissner boundary conditions in
terms of the stress functions hence acquire a simple content: the Kirchhoff boundary con-
ditions reduce to prescribing two functions X* on I' and the Reissner boundary conditions
reduce to prescribing the function X = /,%,5 in addition to x*.

4°, Conditions on the discontinuity. Itissometimes convenient to use
piecewise-smooth functions to construct the admissible fields m28 and ¢* . The discon-
tinuities in m*B, g%, x* and X cannot be arbitrary. Appropriate conditions on the
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discontinuities are derived from (1,7) and (1. 8) and have identical form for the Kirch-
hoff and Reissner models
[xa] = cz* + c*, [X] = ¢

Here [A] is the difference in the values of the quantity A on two sides of the line of
discontinuity,and ¢, ¢* are some constants,

5°, Variational principle for the Reissner model, The variational
problem (1, 1) — (1. 4) is formulated as follows in terms of the stress functions: find the
minimum of the functional

E = { @, (1% %, o) detda? (2.7
Q

D1 (%8s Xa) = D (eBrxY + 2By By a), ¥ = YoXn

among all the functions x* satisfying the conditions (2. 5) on the contour I'.
6°, Compatibility equations for the Reissner model, The Euler
equations of the variational problem in the preceding item are

FY) 1 9 (9@
_— eﬁ‘{ — | — eYB = 0
< am*P ),v T2 ox® (an >,B (2.8)

After having substituted the expression (1.4) for @ into (2, 8), then (2, 8) is converted
into an equation in m*® ang q* which closes the system of equilibrium equations (1. 2)
and (1. 3).

In particular, in the isotropic case

1 A o
20 =12 [ 5 magm® — gy () + 5 s

Hence, (2, 8) becomes

A h2
5% - on o mﬁ, <€%Y — mab Yegy -+ TG.qY. azﬂgWs =0 2.9

It can be verified that substituting the equation of state
1 2ud
Map = 45 [m Pyodag -+ zl“l’(a,m]

5 ,_
9o = 5 h70 (Ua -+ Vo)
into (2. 9) converts it into an identity.

3, One estimate of the elastic energy, In the neighborhood L’ of the
contour I' let it be possible to introduce a curvilinear p, s, coordinate system related
to Z% by the formulas z% == z,* (s) — pv?® (s). Here Z,* (s) are functions giving the
contour I' parametrically, 0 <{s<(L, 0 <<p <!, L isthelengthof I' and
l is a sufficiently small fixed number. The p, § coordinate system is orthogonal, and
the covariant components of the metric tensor are given by the formulas

Geo = 1, 8o = (1 + kp)?, £oo = 0, k = vodr® / ds

Let us assume that the functions z,* (s) are triply differentiable, and the curvature
k (s) of the contour I' and its first derivative are bounded | k (s) | <C ky, | dk/ds | <
ky. Let kil << 1 also, and let the parameter k2 be so small that h < I, hlk, < 1.
Theorem. The inequality
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Eo< g (M2 4 L2N® - hLQ? ds (3.1

where the constant A depends only on k;, k,, [ and the elastic moduli holds for the
elastic energy £, found by the Reissner model (*).
Lemma., We consider the problem of the minimum of the functional

I(x*) =+ S(Xa X PF B2y axo%) da'da?, y = —%—xf‘a (3.2
Q

among the functions X* satisfying the following conditions on T :
X =% Xlr =%

[*3 ]

L) re (L ) 4 (w2 as @0
is valid for the minimal value [, of the functional 7 .

Proof, Let us rewrite the integrand in (3, 2) in the neighborhood Q' of the contour
T' in the curvilinear p, s coordinate system by replacing the partial derivatives with
respect to z* by partial derivatives with respect to p, s by the rules for differentiating
4 complex function, and by introducing the variables . and ¥, in place of %* by the
relationships x* = x va 4 %,7* The formulas

Pa=— Vg l) s,=(1+kp)r,

Then the estimate
na ot

— kV* d’Va__ kt® 1702
= kv%, i ¢, dxldx® = |1+ kp|dpds

are required here,
After simple estimates, we obtain (the comma in the subscripts denotes partial deriva-

tives
) 44k Xy, X P ADNE s+ 215+ X0 T 45,0+ (3.4)

ka? (3% 4 2,01
(14 kp | X0 SA XS g5+ 13, o5 + X5, o+ 15, 00 +
(or? + L2ka?) 42 [+ ka2 (X5 5 + 45 ) + Uea 4 Ka?) %]
We specify the functions X, and %, in @' by the formulas
Xe = %0%Tf (0), Xy = X0"g 1 (0) + Xog (P) (8.5)
)= (1 —p¥B%,  g(p)=p (1 — p*/h¥?

Outside of Q' we set y* = 0. The functions constructed are admissible, hence their
substitution into (3. 2) yields the upper bound for I, . Because of this substitution, by
using the inequalities

ISxax“dsQArS[(vaw)z-}— (taéxjy] ds @.6)
ds ds

M) (Gmdey o< 5 G o

*) The letter A will later denote constants independent of k-
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dr _ ,a\2 d . dy*\? | g dx® 0%
‘S(d?‘a" ) dsgAlS[(E‘«E L reb ol

as well as the inequalities (3. 4), we obtain (3.3). The inequalities (3. 6) are derived by
using the Wirtinger inequalities (6],
Proof of the theorem. We can write for the elastic energy density

20 < A (Mapm®® + h?qag®) = A (o, X% P — 2 (1) +
R%,ax®) <A (Xa,8x ™ + B2X,aX%)
Hence, the minimum (2, 7) of the functional E among the functions satisfying the boun-
dary conditions (2. 5) will not exceed the minimum in the same set of functions of the
functional 4 -7. Hence,(3. 1) results from the use of (2. 6), (3. 3) and the Wirtinger in-
equalities,
Note, It hesnot been used above that the tensor of the elastic compliances is in-
dependent of z*. Hence, the assertion proved is valid even for variable-thickness inho-
mogeneous plates,

4. Asymptotic behavior of solutions of the Relssner equations,
Let us henceforth consider the external loads M* and Q independent of the parameter
h, and M? - N? == (. Then E evidently is on the order of A° = {.

Theorem, The solution of the system of Reissner equations converges,as h — 0,
to the solution of the Kirchhoff equations in energy form,

Proof. Let mg*®, gx* and mpg®P, gr* be the solutions of the Kirchhoff and Reiss-
ner equations. Am*8, Ag® their difference, E (Am?®, Ag®) the elastic energy of the
field Am®B, Ag*. We show that

E (Ame8, Ag™) = O (h) (4.1
The assertion of the theorem evidently follows from (4. 1).

Let us consider the solution mg%® and gg® of the Kirchhoff equations known and let
us replace the required functions in the variational problem (1.1) —(1.4) by m’ep =
meB — mg*B, ¢’ = ¢* — gk°. After discarding terms dependent only on my# and
gk, the energy functional becomes

J= 5 (® (M8, g'2) + h3B,pqqx® + Aupyem'®¥mk)datda?  (4.2)
Q

The quantities m’#8 and ¢’ are determined from the problem of the minimum of the
functional J for all functions m’*B and ¢’ satisfying (1, 2) and the boundary conditions

m vy = 1 (MPry — mEev,) (4.8)
' d
q ava = = Ty (MBTB — m?{rav,,) = Q'

We note that the Kirchhoff boundary forces M and N are equal zero for the boun-
dary conditions (4. 3). The minimizing element of the function J is Am®®, Ag=.

Let us show that the last term in (4. 2) vanishes, In fact, a function u exists for the
solution of the Kirchhoff equations such that Aagys my¥® = u4p, hence, the last term

in (4.3) can be rewritten as S m'aby 4 dzt dz? (4. 4)
s1
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On the other hand, by virtue of (1. 2) and (4. 3), the integral (4. 4) vanishes for any func-
tion u

Let us estimate the second term in (4, 2) by using the Cauchy-Buniakowski inequalities

hzg BapqqxP dat da? < _%2_8 (__;_ Bopq*q® -+ 2B,pqx°qxP) dat dat < (4:5)
h el

+ S D ('8, q*) dat da® 4 e S Bapqx*qx® dat da?
Q Q

On the basis of (4. 5), the upper and lower bounds of the functional J are
x X g @ (m8, q'*) da* da® — h? & Bupqx®qx® dat da® < J < (4.6)
Fo!

Q
—Z’— S @ (m'*8, g'*) dz* dz® + h? &Bagq k*qxP dxt dx?
a

0
Setting m’*® = Am*B, ¢'* = Ag®, we have from the first inequality in (4. 6)

1
5 E (Ams#, A=) — b S Bapgx®qxP dat da? infJ )
ol
Minimizing both sides of the second inequality (4. 6) in m’*8 and ¢'*
inf I <<~ inf S @ (m*#, g'«)dz* dz? + h? & Bapgx*axPdztdz®  (4.3)
! !
We estimate the right side in (4.8) by using the inequality (3. 1). Since M = N =0
for the boundary conditions (4. 3), we obtain

inf§ @ (m's8, g<)dztdz* < Ah { Q2 ds (4.9)
r
The assertion of the theorem and (4. 1) follow from (4. 7) and (4. 9).
The question of convergence of the solutions of the Reissner equations to the solutions

of the Kirchhoff equations was examined in [7] by another method.
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